Beyond the Boundaries of SMOTE - A Framework for Manifold-Based Synthetically Oversampling
نویسندگان
چکیده
Problems of class imbalance appear in diverse domains, ranging from gene function annotation to spectra and medical classification. On such problems, the classifier becomes biased in favour of the majority class. This leads to inaccuracy on the important minority classes, such as specific diseases and gene functions. Synthetic oversampling mitigates this by balancing the training set, whilst avoiding the pitfalls of random under and oversampling. The existing methods are primarily based on the SMOTE algorithm, which employs a bias of randomly generating points between nearest neighbours. The relationship between the generative bias and the latent distribution has a significant impact on the performance of the induced classifier. Our research into gamma-ray spectra classification has shown that the generative bias applied by SMOTE is inappropriate for domains that conform to the manifold property, such as spectra, text, image and climate change classification. To this end, we propose a framework for manifold-based synthetic oversampling, and demonstrate its superiority in terms of robustness to the manifold with respect to the AUC on three spectra classification tasks and 16 UCI
منابع مشابه
Geometric SMOTE: Effective oversampling for imbalanced learning through a geometric extension of SMOTE
Classification of imbalanced datasets is a challenging task for standard algorithms. Although many methods exist to address this problem in different ways, generating artificial data for the minority class is a more general approach compared to algorithmic modifications. SMOTE algorithm and its variations generate synthetic samples along a line segment that joins minority class instances. In th...
متن کاملOversampling Method for Imbalanced Classification
Classification problem for imbalanced datasets is pervasive in a lot of data mining domains. Imbalanced classification has been a hot topic in the academic community. From data level to algorithm level, a lot of solutions have been proposed to tackle the problems resulted from imbalanced datasets. SMOTE is the most popular data-level method and a lot of derivations based on it are developed to ...
متن کاملA hybrid pansharpening approach and multiscale object-based image analysis for mapping diseased pine and oak trees
We developed a multiscale object-based classification method for detecting diseased trees (Japanese Oak Wilt and Japanese Pine Wilt) in high-resolution multispectral satellite imagery. The proposed method involved (1) a hybrid Intensity-Hue-Saturation (IHS)/Smoothing Filter-based Intensity Modulation (SFIM) pansharpening approach 10 (IHS-SFIM) to obtain more spatially and spectrally accurate im...
متن کاملSMOTE for Learning from Imbalanced Data: Progress and Challenges. Marking the 15-year Anniversary∗
The Synthetic Minority Oversampling Technique (SMOTE) preprocessing algorithm has been established as a “de facto” standard in the framework of learning from imbalanced data. This is due to its simplicity in the design of the procedure, as well as its robustness when applied to different type of problems. Since its publication in 2002, it has proven successful in a number of different applicati...
متن کاملBorderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning
In recent years, mining with imbalanced data sets receives more and more attentions in both theoretical and practical aspects. This paper introduces the importance of imbalanced data sets and their broad application domains in data mining, and then summarizes the evaluation metrics and the existing methods to evaluate and solve the imbalance problem. Synthetic minority oversampling technique (S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016